Type II₁ factors satisfying the spatial isomorphism conjecture.
نویسندگان
چکیده
This paper addresses a conjecture in the work by Kadison and Kastler [Kadison RV, Kastler D (1972) Am J Math 94:38-54] that a von Neumann algebra M on a Hilbert space H should be unitarily equivalent to each sufficiently close von Neumann algebra N, and, moreover, the implementing unitary can be chosen to be close to the identity operator. This conjecture is known to be true for amenable von Neumann algebras, and in this paper, we describe classes of nonamenable factors for which the conjecture is valid. These classes are based on tensor products of the hyperfinite II(1) factor with crossed products of abelian algebras by suitably chosen discrete groups.
منابع مشابه
Type II1 factors satisfying the spatial isomorphism conjecture
conjecture Jan Cameron ∗, Erik Christensen †, Allan M. Sinclair ‡,Roger R. Smith §,Stuart White ¶,Alan D. Wiggins ‖ ∗Department of Mathematics, Vassar College, Poughkeepsie, NY 12604, U.S.A.,†Institute for Mathematiske Fag, University of Copenhagen, Copenhagen, Denmark.,‡School of Mathematics, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, Scotland.,§Departm...
متن کاملDigraphs with Tree-like Descendant Sets
We give certain properties which are satisfied by the descendant set of a vertex in a primitive distance-transitive digraph of finite out-valency and provide a strong structure theory for digraphs satisfying these properties. In particular, we show that there are only countably many possibilities for the isomorphism type of such a descendant set, thereby confirming a conjecture of the first Aut...
متن کاملSome difference results on Hayman conjecture and uniqueness
In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...
متن کاملOn isomorphism of two bases in Morrey-Lebesgue type spaces
Double system of exponents with complex-valued coefficients is considered. Under some conditions on the coefficients, we prove that if this system forms a basis for the Morrey-Lebesgue type space on $left[-pi , pi right]$, then it is isomorphic to the classical system of exponents in this space.
متن کاملSTRONG RIGIDITY OF II1 FACTORS ARISING FROM MALLEABLE ACTIONS OF w-RIGID GROUPS, II
We prove that any isomorphism θ : M0 ≃ M of group measure space II1 factors, M0 = L∞(X0, μ0)⋊σ0 G0, M = L ∞(X,μ)⋊σ G, with G0 containing infinite normal subgroups with the relative property (T) of Kazhdan-Margulis (i.e. G0 w-rigid) and G an ICC group acting by Bernoulli shifts σ, essentially comes from an isomorphism of probability spaces which conjugates the actions with respect to some identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 50 شماره
صفحات -
تاریخ انتشار 2012