Type II₁ factors satisfying the spatial isomorphism conjecture.

نویسندگان

  • Jan Cameron
  • Erik Christensen
  • Allan M Sinclair
  • Roger R Smith
  • Stuart A White
  • Alan D Wiggins
چکیده

This paper addresses a conjecture in the work by Kadison and Kastler [Kadison RV, Kastler D (1972) Am J Math 94:38-54] that a von Neumann algebra M on a Hilbert space H should be unitarily equivalent to each sufficiently close von Neumann algebra N, and, moreover, the implementing unitary can be chosen to be close to the identity operator. This conjecture is known to be true for amenable von Neumann algebras, and in this paper, we describe classes of nonamenable factors for which the conjecture is valid. These classes are based on tensor products of the hyperfinite II(1) factor with crossed products of abelian algebras by suitably chosen discrete groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type II1 factors satisfying the spatial isomorphism conjecture

conjecture Jan Cameron ∗, Erik Christensen †, Allan M. Sinclair ‡,Roger R. Smith §,Stuart White ¶,Alan D. Wiggins ‖ ∗Department of Mathematics, Vassar College, Poughkeepsie, NY 12604, U.S.A.,†Institute for Mathematiske Fag, University of Copenhagen, Copenhagen, Denmark.,‡School of Mathematics, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, Scotland.,§Departm...

متن کامل

Digraphs with Tree-like Descendant Sets

We give certain properties which are satisfied by the descendant set of a vertex in a primitive distance-transitive digraph of finite out-valency and provide a strong structure theory for digraphs satisfying these properties. In particular, we show that there are only countably many possibilities for the isomorphism type of such a descendant set, thereby confirming a conjecture of the first Aut...

متن کامل

Some difference results on Hayman conjecture and uniqueness

In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...

متن کامل

On isomorphism of two bases in Morrey-Lebesgue type spaces

Double system of exponents with complex-valued coefficients is considered. Under some conditions on the coefficients, we prove that if this system forms a basis for the Morrey-Lebesgue type space on $left[-pi , pi right]$, then it is isomorphic to the classical system of exponents in this space.

متن کامل

STRONG RIGIDITY OF II1 FACTORS ARISING FROM MALLEABLE ACTIONS OF w-RIGID GROUPS, II

We prove that any isomorphism θ : M0 ≃ M of group measure space II1 factors, M0 = L∞(X0, μ0)⋊σ0 G0, M = L ∞(X,μ)⋊σ G, with G0 containing infinite normal subgroups with the relative property (T) of Kazhdan-Margulis (i.e. G0 w-rigid) and G an ICC group acting by Bernoulli shifts σ, essentially comes from an isomorphism of probability spaces which conjugates the actions with respect to some identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 50  شماره 

صفحات  -

تاریخ انتشار 2012